Data-Driven Inference Reveals Distinct and Conserved Dynamic Pathways of Tool Use Emergence across Animal Taxa, iScience 23 101245 (2020)
There are some wonderful examples of animals using tools. Octopuses block oyster shells open with coral; boxer crabs wave captive anemones for defense and food capture; captive dolphins use feather to wipe clean their aquarium windows. A while ago, we saw this excellent infographic in National Geographic, and got interested in these data. Do different families of animals learn to use tools in completely different ways? Or are there some general ("universal") principles behind how animals learn to use tools?
There is, of course, a big and fascinating literature on tool use, but we found rather few studies attempting a quantitative comparative analysis across bilaterian animals. To address other evolutionary questions, we've developed HyperTraPS (hypercubic transition path sampling), a statistical approach for learning the "pathways" of evolutionary processes. That is, which events occur before and after which other events in an evolving system? Does feature A always evolve before feature B? We used HyperTraPS to ask about the orderings with which different types of tool use appeared in animals. For example, do animals always learn to "poke" before they learn to "dig"? Do all animals learn tool use in the same order, first A then B then C..., or does it vary across species?
We found some answers that we think are quite interesting. There seem to be some quite deep similarities across animal species in how tool use evolves. Types of tool use like "affixing" and "throwing" are almost universally acquired early; types like "cutting" and "symbolising" are acquired late and rarely, only by primates. The environment and animal family influences the structure of these pathways: aquatic organisms seem to discover "waving" tool use relatively early, for example, and primates discover tools that "block" relatively late.
Of course, there's a lot of uncertainty about any analysis like this. Are we talking about wild or captured animals? What if we just haven't observed some types of tool use? We attempted to address several such questions with our analysis and showed that our overall results were quite robust with respect to these uncertainties. HyperTraPS fully describes the uncertainty in its outcomes, helping interpretability. We hope that our results help at least to suggest some possible principles and points for further investigation in this fascinating topic. You can read more in iScience here.
No comments:
Post a Comment